

1. Introduction

The Clairvoyance team participated in the Filtering Track,
submitting the maximum number of runs in each of the
filtering categories: Adaptive, Batch, and Routing. We
had two distinct goals this year: (1) to establish the
generalizability of our approach to adaptive filtering and
(2) to experiment with relatively more "radical" approaches
to batch filtering using ensembles of filters. Our routing
runs served principally to establish an internal basis for
comparisons in performance to adaptive and batch efforts
and are not discussed in this report.

2. Adaptive Filtering

In previous TREC work (TREC 7 & 8), we developed an
approach to adaptive filtering that proved to be robust and
reasonably effective, as evidenced by the relatively strong
performance of our systems [1,2]. For TREC 2001 we
sought to assess the generalizability of the approach,
given especially the differences this year in (a) the amount
and nature of the training data and (b) the inherently
"classification"-oriented (vs. "query"-oriented) task.
Indeed, additional differences, such as the large numbers
of expected "hits" in the test set, contributed to the special
character of this year’s task.

The CLARIT Filtering system is based on core CLARIT
retrieval technology. In brief, the CLARIT approach uses
text structures such as noun phrases, sub-phrases, and
morphologically normalized words, as features or terms to
represent text (or passage) or topic (query) content.
Terms, in turn, are weighted based on document and
corpus statistics (such as IDF and TF), and additionally
can have independent coefficients to adjust weights
according to processing requirements (such as updates).
Information objects are modeled as vectors in a high-
dimensional vector space; the Euclidean inner product
gives the distance (or closeness) measure (document
score) in the space. The system also has a variety of
thesaurus (term-extraction) algorithms; these are used to
identify characterizing terms for a document or set of
documents (e.g., the set of “relevant” documents
associated with a topic).

In addition to core processing, our adaptive-filtering
system has several parameters, including (i) the number
and type of features used to create a topic profile, (ii) the
score/threshold setting, (iii) the frequency of setting
updates (driven by feedback), (iv) the selection and
number of (new) features added at updates, (v) the
resetting of score thresholds, and (vi) the number of
documents retained over time as a basis for modeling the
topic (historical reference statistics and aging).

For this year’s TREC adaptive filtering task, we used the
same system that was used for our TREC-8 experiments
[2]. However, for threshold setting and updating we
further experimented with our beta-gamma adaptive
threshold-regulation method. The method selects a
threshold by interpolating between an “optimal” threshold
and “zero” threshold for a specified utility function. This
method can be applied both to training or sample
document sets, as well as to documents that have been
returned and judged during actual filtering.

The optimal threshold is the threshold that yields the
highest utility over the training or accumulated reference
data. Operationally, this threshold is determined by using
the topic profile as a query over the reference (judged)
documents to score and rank them based on their features
(terms). Additionally, based on the utility function for the
filter, a cumulative utility score is calculated at each rank
point in ascending order. Typically, the cumulative utility
score at each rank point manifests a well-behaved trend: it
ascends, reaches a peak value, and descends again,
eventually turning negative (as the remaining documents
are mostly non-relevant). The feature score on the
document at the lowest rank point where the cumulative
utility score reaches its maximum is taken as the optimal
threshold. The zero threshold is determined by the score
on the document at the highest rank point below the
optimal threshold that has a cumulative utility of zero or
less.

The two parameters, beta and gamma, are used to
determine the feature score—between the optimal
threshold and the zero threshold—that will be used as the
actual threshold for the filter. Beta attempts to account for
the inherent or systematic (i.e. sampling) bias in optimal
threshold calculation. Gamma makes the thresholding
algorithm sensitive to the number of documents
processed. The inverse (1/gamma) expresses the number
of documents needed to gain reasonable confidence in the
value of the score threshold (apart from the bias already
accounted for through beta). The parameters are

Topic-Specific Optimization and Structuring

A Report on CLARIT TREC-2001 Experiments

David A. Evans, James Shanahan, Xiang Tong, Norbert Roma, Emilia Stoica,
Victor Sheftel, Jesse Montgomery, Jeffrey Bennett, Sumio Fujita*, Gregory Grefenstette

Clairvoyance Corporation, Pittsburgh, PA & *Justsystem Corporation, Tokushima, Japan

Figure 1. Beta-Gamma Threshold Regulation

examplespositiveof numberthe is n

threshold filter the is

where

�H-(1=

�-(1=
n-

optimalzero

+

+

determined empirically. See Figure 1 for the formulae
that use beta and gamma to calculate a filter-threshold
score value.

2.1. Pre-Test Experiments and Calibration

We chose to recalibrate all parameter settings by running
the system again on the tasks for TREC-8 and TREC-9
Filtering—the latter task to better approximate the
classification-oriented features of the Reuters data. (In
particular, we did no adaptive-filtering calibrations on any
Reuters data (1987 or 1996), given our desire to assess
unbiased system performance.) Our results for these
preliminary tasks were quite good (actually better than any
of the reported results in TREC 8 and equal to the best
results in TREC 9).

2.2. Test Configuration

Our approach to testing included the following elements.

• Preprocessing: All documents, including testing
documents, training documents, and topic
descriptions, were pre-indexed using all single nouns,
single words occurring in noun phrases, and two-word
noun phrases, as recognized by the CLARIT parser.

• IDF Statistics: The IDF statistics were collected from
all the training data. We did not update initial term
statistics in the process of filtering as our past
experiments indicate that doing so does not seem to
have as much impact on the overall filtering
performance as other factors.

• Term Weighting and Scoring: We used the BM25 TF
formula for TF-IDF weighting; the average document
length was set to 1,000. We used dot product scoring
for matching documents with profiles.

• Initial Profile Term Vector: An initial profile vector was
built from the original topic description and trained
using the two training examples for each topic by
adding 20 terms to the original profiles with coefficient
of 0.1. We used a delivery-ratio estimation method to
set the initial score threshold and set both gamma
and beta to 0.1 for use in processing test data.

• Term Vector Updating: We used Rocchio term vector
learning, but only positive examples were used to
expand the profile. A centroid vector accumulator was
updated whenever a profile accepted a relevant
document. The top K terms with the highest scores
were selected from the centroid and added to the
original profile with a uniform coefficient. The vector
was updated when a specified number of documents
had been delivered since the last update or when the
profile had not been updated for a time interval
measured by 3,000 documents in the test stream.

• Threshold Updating: We used the same beta-gamma
threshold-regulation algorithm as in TREC-8. To
emphasize recent documents, we discarded any
documents in the cached set of scored documents for
each profile that were older than 30,000 documents,
provided the cached set did not fall below a minimum
of 1,000 documents. The cached documents included
both true- and false-positive examples. At any point
when a false-positive document scored below a
“reference threshold”—equal to half of the then-

current real threshold for the profile—the document
was discarded.

For the official TREC-2001 submission, we used the best
parameter settings we discovered in our preliminary
experiments (on TREC-8 and TREC-9 data). In particular,
we varied only two parameters—the number of terms
added at each update and slight differences in threshold
convergence rates—to create four different submissions,
with configurations as given in Table 1, optimized for linear
utility T10U.

2.3. Test Results

Table 2 gives official results for our submitted runs and
Table 3 gives comparative results. Our four official runs
have similar performance. Our results were good from the
point of view of “conservative” filtering (and delivery of
information); we achieved an average utility of 222 for our
best run, with only 30 topics scoring slight negative utility
(the average of these being –4.37 and the maximum –12).
However, in the context of the TREC task and the Reuters
data, this is poor-to-mediocre performance.

2.4. Observations

It seems clear in retrospect that the principal problem in
the system was the setting of rather high thresholds
(scores), resulting in the delivery of too few documents,
especially in the first stages of filtering.

In our system, the initial threshold setting is determined, in
part, by the expected “delivery ratio” or density of relevant
documents expected in the stream of data to be
processed. In particular, before any filtering can occur, a
score threshold must be established based on the
available information about the topic. Two example
documents alone do not constitute a sufficiently
representative sample of documents for effective beta-
gamma regulation. Instead, we employ a reference

 CLT10AFA CLT10AFB CLT10AFC CLT10AFD
Best 3 1 1 2

> Median 13 17 16 12
Median 10 9 10 14

< Median 56 55 55 54
Worst 2 2 2 2

Table 3. Comparative T10SU Results: Number of Topics
Scoring at Various Ranks

Run Ts Added Coeff. Beta Gamma Interval
CL01afa 20 0.10 0.10 0.10 2
CL01afb 200 0.25 0.25 0.05 2
CL01afc 200 0.25 0.25 0.05 4
CL01afd 20 0.10 0.10 0.10 4

 CLT10AFA CLT10AFB CLT10AFC CLT10AFD

T10U 163.7 160.4 172.9 221.8

T10SU 0.054 0.051 0.05 0.051

T10F 0.081 0.075 0.07 0.078

Table 1. Configurations for Adaptive Filtering Runs

Table 2. Official Adaptive Filtering Test Results

collection (in this case, the Reuters 1996 training
documents) as a target corpus. In practice, we use the
topic profile (based on terms extracted from the topic
description and the two example documents) as a query to
score and rank the reference documents. Note that we
examine none of the documents in the reference corpus in
this process and neither make nor require any information
about the relevance of individual documents. We merely
use the documents of the collection as an empirical test of
the scoring potential of the topic profile. After scoring, we
identify the rank point that corresponds to the expected
ratio of relevant documents for the collection. The score
on that document is used as the initial score threshold for
the filter. As a concrete example, if we project the delivery
ratio to be 1-in-1,000 and we have 10,000 documents in
the reference collection, we would use the score on the
document at rank 10 as the initial score for the filter
threshold.

Given that we calibrated on TREC-8 and TREC-9 tasks,
where observed delivery ratios average approximately 1-
in-10,000 (TREC-9 = 0.000173 and TREC-8 = 0.00019),
we began the TREC-2001 task with default assumptions
of delivery that were far out of line with the actual density
of topics in the Reuters 1996 Test Collection. In fact, the
average density of topics in Reuters is approximately 1-in-
100 (0.0125), nearly two orders of magnitude greater than
in the collections we have seen in previous TREC tasks.

This discrepancy between our initial expectations (and the
only ones that we might legitimately make) and the actual
topic density in Reuters is an immediate source of error in
our processing. It might underscore one criticism of the
Reuters collection—or at least the use of Reuters subject
categories in that collection—as a test bed for adaptive
filtering, namely, that such “topics” with such high
densities are poor representatives of real-world adaptive
filtering tasks.

This problem in delivery-ratio expectations can also be
regarded as an indication of a flaw in the user model we
(as a group) have adopted for TREC adaptive filtering. In
that model, we assume that a simple utility function—
balancing the value of true versus false positives, and
possibly taking into account false negatives—can
represent the target outcome of a process. It is clear,
however, that some expectations of delivery are also
critical and are very likely a part of any user’s set of
expectations on filter performance.

Note, it is possible to criticize a system that requires a
delivery-ratio setting to perform well in contrast to one that
does not. Any system that can perform well without such
a setting is to be preferred to one that cannot—ceteris
paribus, by Occam’s Razor alone. However, it is not clear
that any of the more successful adaptive filtering systems
that participated in TREC 2001 experiments are such
systems. In fact, these better systems seem to have
modeled the delivery ratio quite accurately. One wonders
how such a model might have been developed on the
basis of the topic statement and two sample documents
alone. Of course, it is possible that such systems were
simply initialized with expectations of 1- or 2-in-100
documents as candidate density. If so, these were lucky
choices, indeed. And, of course, if these were just good
guesses, it still remains to determine how such good
guessing might be ensured, in principal, in filtering over

other streams/collections, such as the ones we saw in
TREC-8 and TREC-9 tasks, or such as occur in real-world
applications, where information about expected density of
a topic in the possibly many data streams that are
accessed is not available.

2.5. Follow-Up Experiments

Recognizing that our system suffered from the
inappropriate expectations of density we used, we decided
to re-run the experiments with explicitly different delivery-
ratio settings. In particular, we wanted to assess the
inherent strength (or weakness) of the system without the
artificial constraint imposed by inappropriate delivery-ratio
assumptions.

In a set of follow-up experiments, we re-set a variety of
parameters to accommodate the special conditions of
Reuters topics. We used a delivery-ratio expectation of
2.5% (0.025) to model the relatively frequent occurrence
of topics. This was designed to insure that we would
commence filtering with a lower expected score threshold.
But given the extraordinarily high ratios of relevant
documents for many topics, we might well find the lowered
thresholds to be still too high. We hypothesize that, when
we expect high density of a topic in a stream, we should
expect any small number of sample documents (e.g., 2) to
be extremely under-representative of the topic and to
create a high-score bias. This is because features (terms)
extracted from such non-representative documents will
emphasize the distinct characteristics of those documents
and will tend to select and score highly only the small
subset of similar documents that share their biases. In
such cases, we should depress the lower-bound score
further, at least until we have achieve a feedback sample
of sufficient size to insure that topic-representation biases
are minimized.

As a test of this hypothesis we used lowered beta and
gamma values to retard the convergence on a stable, high
(optimal) threshold score. (Note that a beta = 0 would
essentially deliver any document that matched on any of
the features in the profile.) We also delayed the profile
updates until we had accumulated sufficient judgments to
yield nine true positives (along with any false positives that
also were delivered in the interval). And, finally, we
introduced a new parameter, mu, to serve as a coefficient
on the filter threshold. For 0 < mu < 1, this effectively
further lowers the threshold to allow more documents to
be delivered for judgment.

 CLT10F01 CLT10F02 CLT10F03 CLT10F04

Del-Ratio 0.025 0.025 0.025 0.025

Beta 0.15 0.15 0.15 0.15

Gamma 0.01 0.01 0.005 0.005

Update 9 9 9 9

Mu 1.0 0.9 1.0 0.9

T10U 1716.8 1678.9 1714.9 1679.6

T10SU 0.1003 0.0843 0.0983 0.0813

T10F 0.1980 0.2097 0.2057 0.2148

Table 4. Results of Post-TREC Adaptive-Filtering
Experiments

The results of these follow-up experiments, given in Table
4 for the Runs labeled CLT10F01–04, demonstrate
immediate, dramatic improvements. Compared to the
official runs (Table 2), the improvement in performance is
nearly 100% for T10SU, 250%+ for T10F, and
approaching 800% for T10U. Note that these results do
not reflect the effect of different term selection (or numbers
of terms selected), rather derive only from (1) assuming a
more appropriate delivery ratio, (2) lowering the rate of
convergence on an “optimal” utility point, (3) postponing
updates, and (4) further reducing the threshold.

Still, the results are sub-optimal and not at the level of the
best-performing systems. We suspect that several factors
are interacting to limit performance, including the fact that
our core process is geared to retrieval performance and
not classification. Thus, we did not model negative or
border cases explicitly in developing topic profiles. In
addition, the Reuters topics are quite vague and in some
cases diffuse, in the sense of having a variety of sub-
topics. We believe that such cases are best treated with
complex filters, not simple ones, capable of modeling the
topic structure directly. We offer more specific thoughts
on this point in the following section, in our discussion of
topic-specific optimization strategies in batch filtering.

3. Batch Filtering

Traditional information retrieval approaches to batch
filtering have tended to represent a category or topic using
a single or monolithic filter (model) that is extracted from
positive examples of the category. However, both
empirical and theoretical studies in other fields such as
machine learning have shown that using multiple models
or ensembles of models can lead to improved
performance given some weak assumptions about the
constituent models [3,4,5,6]. Hansen and Salamon [3]
proved that, given an ensemble of models in which the
error rate of each constituent model is better than random
and where each constituent model makes errors
completely independent of any other, the expected
ensemble error decreases monotonically with the number
of constituent models. As examples of these theoretical
claims, empirical studies in the field of machine learning
have shown that, when weak or unstable learning
algorithms, such as C4.5, are used in conjunction with
ensemble techniques, the performance of these
approaches can be improved significantly [4,8].

The improved performance gained from using ensemble
approaches can be attributed to avoiding risks that arise
from using a single model. These risks can be statistical
in nature, where more than one statistical solution exists
(stability). They can be algorithmic in nature, e.g., with
high risk of getting stuck in local minima models. They
can be representational in nature, e.g., when the space of
representable models is infinite. In addition, some
concepts can be very diverse and can be more accurately
modeled using multiple models. Though the use of
ensemble models is a relatively new, active, and very
promising field of research in machine learning, very little
work in information retrieval has incorporated the notion of
ensemble models.

Our TREC-2001 experiments were designed explicitly to
explore some of the issues in the use of ensemble filters
for batch filtering. The arguments for using complex (non-

unitary) filters are intuitively compelling. We recognize (a)
that no single term-selection method works uniformly well
for all topics and (b) that some topics are best modeled as
"dispersed"—not based on a single set of features, but
possibly a family of distinct sub-features. This would
seem to suggest that multiple representations (hence,
multiple filters) are needed. Thus, we created an
approach that optimized filters on a topic-by-topic basis
according to feature extraction method and filter structure.
In particular, in this heterogeneous approach, filters for
each topic were unique: each topic's features were derived
by one of five different feature extraction techniques and
each was modeled by either (i) a single (monolithic) filter,
or (ii) a family of four, parallel (multiplexed) filters, or (iii) a
set of n (cascaded) filters sequenced so that each filter
after the first considered only the fallout (below-threshold-
scoring) documents of the preceding filter.

3.1 General Description of Ensemble Batch Filtering

Ensemble filtering explores the general idea of
constructing many weak or focused filters and combining
these into a single highly accurate filter (using, for
example, voting) in order to filter or classify an unlabeled
document. Ensemble filters can be constructed and
combined using various techniques that have been
proposed and empirically demonstrated in the fields of
machine learning and statistics. Construction approaches
vary widely but can generally be placed into three broad
categories: data-related methods (such as bagging and
boosting); representation-based methods (such as
constructive induction and alternative representations of
the output space, such as error correcting output codes);
and approaches that differ based upon the hypothesis
search strategies employed. When it comes to
aggregating the constituent filters of an ensemble, various
strategies can be used, such as voting strategies as in
multiplexing, a cascade (or waterfall) aggregation strategy,
or aggregation strategies that are learned, as in stacked
generalization [9].

Filter

Filter

Filter

Filter

Filter

Filter

Figure 2. Schematic Representation of a Multiplex
(Parallel) and Cascade (Sequential) Filter

For TREC 2001, we limited our exploration of ensemble
filters to multiplex and cascade filters, illustrated
schematically in Figure 2. Due to time and system
limitations, we used simplified versions of the bagging and
boosting algorithms, both of which generate component
filters based upon different training data sampling
procedures, to construct multiplex and cascade filters
respectively.

A multiplex filter is a filter made up of constituent filters Fi,
where the multiplex filter accepts the unlabeled document
(and classifies it as positive) based on some interpretation
of the independent scoring of each constituent filter Fi. In
fact, there are many possible, alternative methods for
interpreting the score of a set of filters, ranging from some
simple combination of binary outcomes (e.g., the sum of
the “votes” of each filter) to a weighted, possibly non-
independent scoring based on the interaction of filters. In
our experiments, we chose the simplest approach and
accepted a document if the document was accepted by
any one of the constituent filters.

On the other hand, a cascade filter is an ensemble filter
that consists of an ordered list of filters {F1, …, Fn}, where
each filter, Fi, consists of two outputs: one corresponding
to the positive class and the other corresponding to the
negative or fallout class. Each constituent filter Fi is linked
to the fallout class of the filter Fi-1. An unlabeled document
is processed by each filter Fi in left-to-right fashion. Should
any filter accept the document, processing terminates and
the unlabeled document is accepted by the ensemble
filter. Otherwise, the subsequent filter Fi+1 processes the
unlabeled document in a similar fashion. This process
repeats until either some constituent filter has accepted
the document or no filter has.

In the case of ensemble filters, we used two different
construction approaches for our TREC-2001 submitted
runs (both of which are outlined below): one based upon
the iterative modeling of fallout examples, which is a
simplified version of boosting; the other based upon cross-
validation, which is a simplified version of bagging. We
used n-fold cross-validation [7] to choose the construction
and aggregation method and make other representational
decisions, such as which of several term-extraction
methods and term counts to use.

3.1.1. Cross-Validation to Construct Monolithic Filters

For ease of presentation, prior to describing ensemble
filter construction algorithms, we review how cross-
validation was used to construct monolithic filters.
Monolithic filters served as our baseline submission. The
presentation is made more concrete by using the TREC-
2001 filtering problem—the Reuters 1996 dataset.

For all submissions, the training corpus was divided into
four folds. More specifically, the Reuters 1996 training
corpus of twelve days was partitioned into four subsets
denoted by Q1, Q2, Q3, and Q4, where each quarter
consisted of a non-overlapping sequential sampling of a
subset of the full training dataset.

Monolithic filters were constructed using either (a) the
topic descriptions alone, which we subsequently refer to
as “topic filters,” or (b) the training corpus. To construct
topic filters, we extracted filter terms from the topic
descriptions and set thresholds using a beta-gamma
optimization on three quarters of the data, while the
unseen quarter was used as a blind test. This led to a
utility measure for the test quarter. This experiment was
repeated for each quarter, thereby generating four utility
measures U1, U2, U3, U4. The average was taken of these
four utility measures resulting in a utility measure,
AvgTopicU, for the corresponding topic filter.

On the other hand, when constructing monolithic filters
from training examples, we examined the results of
various thesaurus extraction methods and corresponding
term counts and chose an optimal filter representation
based upon its cross validation performance. See Table 5

Method
X

Terms
CC Roc RocFQ Prob1 Prob2

10 X X X X X
25 X X X X X
30 X X
50 X X X X X
80 X X X X X
100 X X X X X
120 X X X X X
150 X X X X X
180 X X
200 X X X X X
260 X X
300 X X X X X
340 X X
400 X X X X X
450 X X
500 X X

Table 5. Term Count and Extraction Method Combinations

Figure 3. Term-Extraction Formulae

R

(t)TF
 x IDF(t)Rocchio(t) DocSetD

D∑
∈=

R

(t)F
 x IDF(t)t)RocchioFQ(DocSetD

D∑
∈=

1)
R

1R
log(1)

1RN
2RN

log(Prob1(t)
ttt

−+−−
+−

+−=

Prob1(t)*1)log(RProb2(t) t +=

Where,

TFd(t) = Frequency of term t or how many times the term
appears in document d

N = Number of documents in the reference corpus

Nt = Number of documents in the reference
corpus that contain term t

R = Number of relevant documents

Rt = Number of relevant documents containing term t

IDF (t) = 1 + log
tN

N

for a list of all combinations of thesaurus extraction
methods and term counts that were examined for our
TREC-2001 submissions. Note that the label “CC” in the
Table stands for “CLARIT Classic,” a proprietary term-
extraction method. Our implementations of the methods
we refer to as “Rocchio” (“Roc”), “RocchioFQ” (“RocFQ”),
“Prob1,” and “Prob2,” are given in Figure 3.

In practice, given a training dataset that is partitioned into
four folds, Q1, Q2, Q3, and Q4 (for the purposes of our
experiments), this optimization procedure translates into
taking each combination of thesaurus extraction method E
and number of terms N and performing the following
steps:

For each topic T

1. Repeat steps 2 to 6 for all combinations {E, N}
listed in Table 5, thereby generating an average
utility for each combination.

2. Do thesaurus extraction on Q1+Q2 with the {E, N}
combination.

3. Optimize the threshold for T using beta-gamma
threshold optimization over Q3.

4. Do a blind test on Q4 generating a utility value U4.

5. Repeat steps 1 to 4 for alternative combinations of
Q1, Q2, Q3, Q4, insuring that each database
subset is used as a blind test at most once. This
leads to a utility value for each database subset of
U1, U2, U3, U4.

6. Set average utility for this combination of {E, N}
AvgMonoU to Average(U1, U2, U3, U4).

7. Select the combination {E, N} that provides the
highest average utility as the optimal means of
generating a monolithic filter for this topic T.

A utility measure for each fold of the dataset can be
generated using various combinations of extraction folds
and optimization folds, however, for our experiments, we
limited our exploration to the following: {Q1=3, Q2=4,
Q3=2, Q4=1; Q1=1, Q2=3, Q3=4, Q4=2; Q1=2, Q2=4,
Q3=1, Q4=3; Q1=1, Q2=2, Q3=3, Q4=4}, where 1, 2, 3,
and 4 denote the folds in the training dataset and Qi
denote the variables used in the above algorithm. In
deciding between modeling a topic using a monolithic filter
or a topic filter, we choose the filter with the highest
average utility scores on the four-fold datasets (i.e.,
AvgMonoU and AvgTopicU). Prior to running the selected
filters on the eleven months of test data, the system
retrains each filter using the entire twelve days of training,
where the filter thresholds are set using the beta-gamma
method on linear utility, T10U, over the entire training
dataset.

3.1.2. Ensemble Filter Construction Algorithms

For our TREC-2001 submissions we developed one
construction algorithm for each of the two ensemble-filter
types used. Since the construction algorithm for multiplex
filters is closely related to that for monolithic filter
construction (described above), we begin by presenting
multiplex filter construction. This algorithm is a simplified
version of bagging, whereby each filter is constructed from
a sampled subset of the training data based upon an n-

fold partitioning of the data. This is in contrast to the more
commonly used approach for bagging, where each filter is
constructed from a randomly generated dataset. In this
case each filter’s training dataset is generated by
randomly drawing, with replacement, a specified number
of examples from the training dataset (typically equal to
the size of the training data). We adapted the simpler
strategy based on n-folds due to time and system
limitations.

For our current experiments, each topic was modeled
using a multiplex filter consisting of four component filters
(unless there was insufficient training data for the topic),
where each filter was constructed using steps 2 to 6 in the
algorithm for constructing monolithic filters (above), i.e.,
one filter corresponding to each fold in the training data.
Unlike the monolithic run (where the final monolithic filters
were trained on the entire training dataset), the component
filters in the multiplex filter were trained on two quarters of
the training data, while the threshold was optimized using
the beta-gamma method on the third quarter.

Figure 4 gives a screen shot of a multiplex filter that was
constructed for topic 39 using the CLARIT AW Toolkit. It
presents a multiplex filter consisting of four component
filters (each depicted as a node) that were constructed
using four different subsets of the training dataset. The
folds that were used to generate these subsets are
depicted as nodes in the top portion of the screen shot.

On the other hand, the construction algorithm for cascade
filters in our TREC2001 submissions is a simplified version
of boosting (a version of boosting based upon sampling).
The focus of these methods is to produce a series of
filters. The training set used for each filter in the series is
chosen based on the performance of earlier filters in the
series. In boosting, examples that are incorrectly
classified by previous filters in the series are chosen more
often to train subsequent filters than examples that were
correctly classified. Thus boosting attempts to generate
filters that are better able to predict examples for which the
current ensemble’s performance is poor.

For our experiments, we adapted a simplified, rather
radical, approach to boosting, whereby each example that
was correctly modeled using the current ensemble was
not used in the construction of subsequent filters. As a
result of this simplification, different stopping criteria were
required to ensure termination of the algorithm. These are
presented subsequently.

The approach to constructing a cascade filter for a topic T
involves a number of steps and assumes as input three
datasets D1, D2, and D3, which are respectively used for
thesaurus extraction, threshold optimization, and blind
testing. These datasets could correspond to the following
folds in the training data: Q1+Q2, Q3, and Q4 respectively.
In this case the training dataset is split into four
subsets/folds. The algorithm consists of two threads: the
extraction thread and the threshold setting or optimization
thread. Each thread results in the construction of its own
cascade filter, namely, CExtraction and COpt. The algorithm is
presented in stepwise fashion in Figure 6, where the left
and right hand sides of the figure depict the extraction
thread and optimization thread respectively. The
algorithm is iterative in nature, whereby the first filter in the
cascade, C1Extraction, is constructed using the positive topic

Figure 4. Example of a Multiplex Filter for Topic 39, with Performance Illustrated on the Training Corpus

Figure 5. Example of a Cascade Filter for Topic 39, with Performance Illustrated on the Training Corpus

+

–
C1

D1 +
E.g.s

+

–
C1

D2
E.g.s Step 1: Do Term Extraction and Weighting for

C1 using all positive examples in D1

Step 3: If the number of fallout positive
examples from C1 is < minRequiredCount or
C1 Utility for D2 is negative then stop here.

Thread1 Thread2
Term
Extraction

Threshold
Optimization

+

–C1

D1 +
E.g.s

+

–C1

D2
E.g.s

Step 4: Do Term Extraction and Weighting for
C2 using all positive examples in fallout of C1

Step 5: Do Threshold
optimization for C2
using fallout from C1 using Beta-
Gamma (T10 utility)

C2

+

–
C2

–

+

Step 6: If number of fallout positive
examples from C2 is < minRequiredCount or
C2 Utility for D2 is negative then stop here,
else

Repeat Steps:
Term Extraction and Weighting
Threshold Optimization

Until fallout positive examples is
< minRequiredCount OR Utility is
negative

Step 2: Do threshold
optimization for C1 using D2 using
Beta-Gamma (T10 utility)

+

2nd Last Step:
Connect all positive
outputs using a set
union filter

Last Step:
Do a blind test on D3

+

–
+

–

+

–

U
n

io
n

D1 +
E.g.s

+

–
+

–

+

–

U
n

io
n

D3

+

Figure 6. Schematic Representation of the Cascade-Filter Creation Procedure

C1

C2

Cn

C1

C2

Cn

examples in the extraction dataset D1 (Step 1 in Figure 6).
This cascade corresponds to the extraction cascade
CExtraction. In order to set the threshold for C1Extraction, a
second cascade filter (i.e., the optimization cascade) is
constructed. The first constituent filter in this cascade is
simply a copy of C1Extraction and is denoted as C1Opt. To
avoid clutter in Figure 6, the Extraction and Opt suffixes
are dropped from the component filters names. The
threshold for C1Opt is set using the beta-gamma method
based upon the linear utility over the optimization dataset
D2 (Step 2 in Figure 6). The threshold of the C1Extraction
filter is set to the optimized threshold of C1Opt.
Subsequently, the fallout documents from C1 (i.e., positive
examples from D1 that are rejected by C1Extraction) are used
to construct the second filter C2Extraction in the cascade,
provided various continuation conditions are met. These
include: the number of documents in the fallout of
C1Extraction is greater than a minimum number of
documents required to construct a filter; the linear utility of
the C1Opt over the optimization dataset is positive. The
above steps of constituent filter extraction and threshold
optimization (on the fallout of each preceding filter) are
repeated as long as the continuation conditions are
satisfied. Once any continuation conditions fail, all the
positive outputs of the constituent filters of the extraction
cascade CExtraction are connected to a union filter (2nd-Last
Step in Figure 6). Subsequently this cascade filter is
applied to the D3 dataset and a utility measure is obtained
(Last Step in Figure 6).

Figure 5 presents a screen shot of the extraction cascade
for topic 39 of the Reuters Corpus. Each filter in the
cascade, in this figure, is associated with a precision-recall
curve.

The above procedure is repeated such that each quarter
of the training dataset serves as a blind test (D3) at most
once. This results in a utility measure for each quarter.
An average of these four values is then taken, resulting in
an average utility, AvgCascU, for this cascade filter. This
value serves as a comparison to other approaches used
for modeling a topic. Should the cascade filter be chosen
(based upon average utility) to model a topic, the cascade
filter is first re-trained using three quarters of the data for
extraction (D1), while the fourth quarter is used for
threshold optimization (D2) and a blind test is carried out
on the test dataset.

3.2. Test Configuration

We submitted two batch filtering runs: one where each
topic was represented by a single or monolithic filter
(CLT10BFA); the other, which we call the “rainbow run”
(CLT10BFB), where each topic was represented by using
one (the best) of either a topic, monolithic, multiplex, or
cascade filter. Note that for both submission runs, beta
was set to 0.1 and gamma was set to 0.05. The minimum
number of documents required for filter construction in
ensemble filters was set to five. In both cases, we chose
the final representation for a topic based on which of the
alternative choices yielded the highest average cross-
validation utility.

In the construction of cascaded filters, the representation
of each constituent filter was globally set to the optimally
determined representation for monolithic filters. Since the
average cross-validation utility for both monolithic and

multiplex filters corresponds to the same value, a further
evaluation criterion was necessary. To decide between
these two approaches, we re-trained a corresponding
monolithic filter using the entire twelve days of training.
The beta-gamma method was used to optimize the
threshold of the resulting monolithic filter. This re-trained
filter was subsequently used for retrieval over the twelve
days of training data and a corresponding global utility was
calculated. Similarly, the extracted multiplex filter was
used to filter documents from the twelve days of training
and a corresponding global utility calculated. The
approach with the highest global utility was chosen as the
approach to model the associated topic.

As a benchmark for our ensemble approaches, we carried
out a batch filtering experiment using our traditional
information retrieval system in conjunction with an
optimization strategy for identifying the term extraction
method and term count similar to that outlined above. This
experiment modeled each topic using a monolithic filter.

3.3. Test Results

Table 6 presents a summary of various batch filtering runs
in terms of the linear utility (T10U) and normalized linear
utility (T10SU). Row one of this table presents the median
of all submitted runs (from all groups) for TREC-2001
batch filtering. The second and third rows summarize the
results for our two submitted runs. Our official
heterogeneous or rainbow submission had an average
normalized utility of 0.152 and F-utility of 3371. The
CLT10BFC run represents the result of our benchmark
run, which was inadvertently not submitted.

In the context of this year’s task, our Batch results are
weak. In follow-up analyses, we determined that some of
the performance shortfalls were due to processing errors
under our control. For example, the test data had become
corrupted in our translation of the NIST sources into our
processing format; this led to our losing actual test
documents, which naturally limited our results in some
cases. In another more serious case, we inadvertently
failed to reset a critical system parameter—one that sets
an upper bound on the number of documents that are
considered in any set of documents to be compared to a
topic profile—when the system moved from training to
testing data. In effect, we only considered about one-third
of the test documents that should have been considered
as candidates for matching each topic. This particular
problem affected both our routing-based baseline run and
our heterogeneous run. When we corrected these
problems and re-ran over the correct version of the testing
data, we saw immediate improvement in both runs. In
particular the heterogeneous approach improved by about
60% (from 0.152 to 0.239 normalized utility), making it
essentially indistinguishable from our routing-based
results. The CLT10BFA2, CLT10BFB2, and CLT10BFC2
runs correspond to re-runs of our official submissions and
our benchmark run, respectively, where both the dataset
errors and the critical retrieval parameter have been
corrected. Here, our benchmark run yields a performance
of 0.257.

The remainder of Table 6 relates to some post-TREC
experiments that addressed various problems that
occurred during the preparation of our final submissions.

These experiments were all conducted on the corrected
dataset and with properly set retrieval parameters.
GlobalCascade relates to a run where each topic is
represented using a cascade filter where the extraction
method and associated term count for each constituent
filter in the cascade has a fixed setting. In particular, all
constituent filters in the cascade are given the same
settings as were determined to be optimal for the
corresponding monolithic filter for the topic (in
CLT10BFA2). LocalCascade denotes an experiment
where each topic is represented using a cascade filter. In
this case the extraction method and associated term count
for each constituent filter in the cascade is optimized
locally. Multiplex relates to an experiment where each
filter is represented using a multiplex filter.

3.4. Observations

Our work in batch filtering this year represented an initial
attempt at the construction of ensemble filters. Due to
system limitations and time constraints, our experiments
were accomplished using simplified versions of bagging
and boosting algorithms for the construction of multiplex
and cascade filters respectively. Even though the
performance of the current system is only comparable to
the TREC median, performance should improve with full
implementations of bagging and boosting algorithms along
with more comprehensive experimentation. Current work
is addressing both of these issues.

Though our proposed approaches to ensemble filters
model subtopic structure, albeit in a limited fashion, a
more natural means of identifying and thereby
representing topic structure can be achieved using
clustering. This forms a very important part to our current
work in this area.

Our analysis suggests that ensemble filters perform better
than monolithic filters for certain classes of topics. To
take advantage of the potential boost in performance that
would come from topic structuring, any operational system
would have to be able to predict whether a particular
filtering task (topic) is best modeled via a monolithic or an
ensemble filter. Our hypothesis is that, if there is
sufficient training data (or relevance judgments in a
running filter), then multiplex filters will outperform
monolithic ones. In such cases, then, the task becomes
choosing between multiplex and cascade approaches.

Our hypothesis is that cascading is optimal when the topic
is vague or diffuse. Thus, to make a principled decision
about which approach to select, we need a means of
diagnosing topic structure. We have begun work on the
development of a simple method to accomplish this.

In our report at the TREC 2001 Meeting, we described
retrospective results that simulated such an ideal choice—
essentially, the best performing method for each topic as
seen in the homogeneous runs represented by our
baseline monolithic run (CLT10BFB2), our multiplex run
(Multiplex), and our cascade run (GlobalCascade)—which
we called “MadMax.” A striking feature of the MadMax
simulation run was the remarkable performance of
cascade filters in the case of twelve topics, significantly
exceeding the reported official TREC maximum results.
We feel obligated to report now that, in work since the time
of the Meeting, we have not been able to duplicate the
extraordinary performance of the cascade runs and now
believe we had corrupted data in reporting those results.
In repeated experiments with cascade filters—albeit with
the limited conditions we employed in our original runs—
we have achieved individual topic performance that equals
or exceeds the reported TREC maximum on six topics; but
only one of these is significantly better than the maximum.

We continue to believe that successful, robust filtering
(especially in distinction to classification) will require topic-
specific optimizations, including topic structuring. We
have only just begun to explore this problem. We will
continue to develop topic-structuring techniques and apply
them in future TREC experiments.

References

[1] Zhai C, Jansen P, Stoica E, Grot N, Evans DA,

“Threshold Calibration in CLARIT Adaptive Filtering”.
In EM Voorhees and DK Harman (Editors), The
Seventh Text REtrieval Conference (TREC-7). NIST
Special Publication 500-242. Washington, DC: U.S.
Government Printing Office, 1999, 149–156.

[2] Zhai C, Jansen P, Roma N, Stoica E, Evans DA.,
“Optimization in CLARIT TREC-8 Adaptive Filtering.”
In EM Voorhees and DK Harman (Editors), The
Eighth Text REtrieval Conference (TREC-8). NIST
Special Publication 500-246. Washington, DC: U.S.
Government Printing Office, 2000, 253–258.

[3] Hansen L, and Salamon P. 1990. Neural network
ensembles. IEEE Transactions on PAMI 12:993–1001

[4] Quinlan JR, Bagging, boosting, and C4.5. In
Proc.Fourteenth National Conference on Artificial
Intelligence, 1996.

[5] Schapire RE, The strength of weak learnability,
Machine Learning, 5(2):197–227, 1990.

[6] Breiman, L, Bagging Predictors, Machine Learning,
24(2):123-140, 1996.

[7] Stone, M (1974), "Cross-validatory choice and
assessment of statistical predictions", Journal of RSS
B 36, 111–147.

[8] Schapire RE and Singer Y, BoosTexter: A boosting-
based system for text categorization. Machine
Learning, 39(2/3):135–168, 2000.

[9] Wolpert, DH Stacked generalization. Neural Networks
5 (1992) 241–259.

Run Description T10SU T10U

Median for all Submitted Runs 0.256 N/A

CLT10BFA 0.147 N/A
Submitted Results

CLT10BFB 0.152 3371

CLT10BFA2 0.237 5834

CLT10BFB2 0.210 4925

CLT10BFC 0.234 5453

CLT10BFC2 0.257 5895

GlobalCascade 0.220 5323

LocalCascade 0.195 4882

Post-TREC Runs

Multiplex 0.225 5665

Table 6. Results of Post-TREC Batch Experiments

R

